Field measurements give biased estimates of functional response parameters, but help explain foraging distributions.
نویسندگان
چکیده
Mechanistic insights and predictive understanding of the spatial distributions of foragers are typically derived by fitting either field measurements on intake rates and food abundance, or observations from controlled experiments, to functional response models. It has remained unclear, however, whether and why one approach should be favoured above the other, as direct comparative studies are rare. The field measurements required to parameterize either single or multi-species functional response models are relatively easy to obtain, except at sites with low food densities and at places with high food densities, as the former will be avoided and the second will be rare. Also, in foragers facing a digestive bottleneck, intake rates (calculated over total time) will be constant over a wide range of food densities. In addition, interference effects may depress intake rates further. All of this hinders the appropriate estimation of parameters such as the 'instantaneous area of discovery' and the handling time, using a type II functional response model also known as 'Holling's disc equation'. Here we compare field- and controlled experimental measurements of intake rate as a function of food abundance in female bar-tailed godwits Limosa lapponica feeding on lugworms Arenicola marina. We show that a fit of the type II functional response model to field measurements predicts lower intake rates (about 2.5 times), longer handling times (about 4 times) and lower 'instantaneous areas of discovery' (about 30-70 times), compared with measurements from controlled experimental conditions. In agreement with the assumptions of Holling's disc equation, under controlled experimental settings both the instantaneous area of discovery and the handling time remained constant with an increase in food density. The field data, however, would lead us to conclude that although handling time remains constant, the instantaneous area of discovery decreased with increasing prey densities. This will result into highly underestimated sensory capacities when using field data. Our results demonstrate that the elucidation of the fundamental mechanisms behind prey detection and prey processing capacities of a species necessitates measurements of functional response functions under the whole range of prey densities on solitary feeding individuals, which is only possible under controlled conditions. Field measurements yield 'consistency tests' of the distributional patterns in a specific ecological context.
منابع مشابه
Estimation of AR Parameters in the Presence of Additive Contamination in the Infinite Variance Case
If we try to estimate the parameters of the AR process {Xn} using the observed process {Xn+Zn} then these estimates will be badly biased and not consistent but we can minimize the damage using a robust estimation procedure such as GM-estimation. The question is does additive contamination affect estimates of “core” parameters in the infinite variance case to the same extent that it does in the ...
متن کاملBATHTUB HAZARD RATE DISTRIBUTIONS AND FUZZY LIFE TIMES
The development of life time analysis started back in the $20^{textit{th}}$ century and since then comprehensive developments have been made to model life time data efficiently. Recent development in measurements shows that all continuous measurements can not be measured as precise numbers but they are more or less fuzzy. Life time is also a continuous phenomenon, and has already been shown tha...
متن کاملUsing spatially explicit models to characterize foraging performance in heterogeneous landscapes.
The success of most foragers is constrained by limits to their sensory perception, memory, and locomotion. However, a general and quantitative understanding of how these constraints affect foraging benefits, and the trade-offs they imply for foraging strategies, is difficult to achieve. This article develops foraging performance statistics to assess constraints and define trade-offs for forager...
متن کاملOn the Challenge of Fitting Tree Size Distributions in Ecology
Patterns that resemble strongly skewed size distributions are frequently observed in ecology. A typical example represents tree size distributions of stem diameters. Empirical tests of ecological theories predicting their parameters have been conducted, but the results are difficult to interpret because the statistical methods that are applied to fit such decaying size distributions vary. In ad...
متن کاملGrazing in a turbulent environment: behavioral response of a calanoid copepod, Centropages hamatus.
Models of marine ecosystem productivity rely on estimates of small-scale interactions, particularly those between copepods and their algal food sources. Rothschild and Osborn [Rothschild, B. J. & Osborn, T. R. (1988) J. Plankton Res. 10, 465-474], hypothesized that small-scale turbulence in aquatic systems increases the perceived abundance of prey to predators. We tested this hypothesis by expo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of animal ecology
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2015